Assignment 10

Hand in no. 2, 4, 5, and 8 by Nov 28, 2023.

- 1. Let E be a bounded, convex set in \mathbb{R}^n . Show that a family of equicontinuous functions is bounded in E if it is bounded at a single point, that is, if there are $x_0 \in E$ and constant M such that $|f(x_0)| \leq M$ for all f in this family.
- 2. Let $\{f_n\}$ be a sequence of bounded functions in [0,1] and let F_n be

$$F_n(x) = \int_0^x f_n(t)dt$$

- (a) Show that the sequence $\{F_n\}$ has a convergent subsequence provided there is some M such that $||f_n||_{\infty} \leq M$, for all n.
- (b) Show that the conclusion in (a) holds when boundedness is replaced by the weaker condition: There is some K such that

$$\int_0^1 |f_n|^2 \le K, \quad \forall n$$

3. Prove that the set consisting of all functions G of the form

$$G(x) = \sin^2 x + \int_0^x \frac{g(y)}{1 + g^2(y)} \, dy \; ,$$

where $g \in C[0, 1]$ is precompact in C[0, 1].

4. Let $K \in C([a, b] \times [a, b])$ and define the operator T by

$$(Tf)(x) = \int_{a}^{b} K(x, y) f(y) dy.$$

- (a) Show that T maps C[a, b] to itself.
- (b) Show that whenever $\{f_n\}$ is a bounded sequence in C[a, b], $\{Tf_n\}$ contains a convergent subsequence.
- 5. Let f be a bounded, uniformly continuous function on \mathbb{R} . Let $f_a(x) = f(x-a)$. Show that there exists a sequence of unit intervals $I_k = [n_k, n_k + 1], n_k \to \infty$, such that $\{f_{n_k}\}$ converges uniformly on [0, 1].
- 6. Optional. A bump function is a smooth function φ in \mathbb{R}^2 which is positive in the unit disk, vanishing outside the ball, and satisfies $\iint_{\mathbb{R}^2} \varphi(x) dA(x) = 1$. Let f be a continuous function defined in an open set containing \overline{G} where G is bounded and open in \mathbb{R}^2 . For small $\varepsilon > 0$, define

$$f_{\varepsilon}(x) = \frac{1}{\varepsilon^2} \iint_{\mathbb{R}^2} \varphi\left(\frac{y-x}{\varepsilon}\right) f(y) \, dA(y) \; .$$

Show that f_{ε} is $C^{\infty}(\overline{G})$ and tends to f uniformly as $\varepsilon \to 0$.

Note. This property has been used in the proof of Cauchy-Peano theorem.

- 7. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in \mathbb{R} (you may draw a table):
 - (a) $A = \{n/2^m : n, m \in \mathbb{Z}\},\$
 - (b) B, all irrational numbers,
 - (c) $C = \{0, 1, 1/2, 1/3, \dots\}$,
 - (d) $D = \{1, 1/2, 1/3, \dots\}$,
 - (e) $E = \{x: x^2 + 3x 6 = 0\},\$
 - (f) $F = \bigcup_k (k, k+1), k \in \mathbb{N}$,
- 8. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in C[0, 1] (you may draw a table):
 - (a) \mathcal{A} , all polynomials whose coefficients are rational numbers,
 - (b) \mathcal{B} , all polynomials,
 - (c) $C = \{f : \int_0^1 f(x) dx \neq 0\}$,
 - (d) $\mathcal{D} = \{ f : f(1/2) = 1 \}$.