Assignment 10

Hand in no. 2, 4, 5, and 8 by Nov 28, 2023.

1. Let E be a bounded, convex set in \mathbb{R}^{n}. Show that a family of equicontinuous functions is bounded in E if it is bounded at a single point, that is, if there are $x_{0} \in E$ and constant M such that $\left|f\left(x_{0}\right)\right| \leq M$ for all f in this family.
2. Let $\left\{f_{n}\right\}$ be a sequence of bounded functions in $[0,1]$ and let F_{n} be

$$
F_{n}(x)=\int_{0}^{x} f_{n}(t) d t
$$

(a) Show that the sequence $\left\{F_{n}\right\}$ has a convergent subsequence provided there is some M such that $\left\|f_{n}\right\|_{\infty} \leq M$, for all n.
(b) Show that the conclusion in (a) holds when boundedness is replaced by the weaker condition: There is some K such that

$$
\int_{0}^{1}\left|f_{n}\right|^{2} \leq K, \quad \forall n
$$

3. Prove that the set consisting of all functions G of the form

$$
G(x)=\sin ^{2} x+\int_{0}^{x} \frac{g(y)}{1+g^{2}(y)} d y
$$

where $g \in C[0,1]$ is precompact in $C[0,1]$.
4. Let $K \in C([a, b] \times[a, b])$ and define the operator T by

$$
(T f)(x)=\int_{a}^{b} K(x, y) f(y) d y
$$

(a) Show that T maps $C[a, b]$ to itself.
(b) Show that whenever $\left\{f_{n}\right\}$ is a bounded sequence in $C[a, b],\left\{T f_{n}\right\}$ contains a convergent subsequence.
5. Let f be a bounded, uniformly continuous function on \mathbb{R}. Let $f_{a}(x)=f(x-a)$. Show that there exists a sequence of unit intervals $I_{k}=\left[n_{k}, n_{k}+1\right], n_{k} \rightarrow \infty$, such that $\left\{f_{n_{k}}\right\}$ converges uniformly on $[0,1]$.
6. Optional. A bump function is a smooth function φ in \mathbb{R}^{2} which is positive in the unit disk, vanishing outside the ball, and satisfies $\iint_{\mathbb{R}^{2}} \varphi(x) d A(x)=1$. Let f be a continuous function defined in an open set containing \bar{G} where G is bounded and open in \mathbb{R}^{2}. For small $\varepsilon>0$, define

$$
f_{\varepsilon}(x)=\frac{1}{\varepsilon^{2}} \iint_{\mathbb{R}^{2}} \varphi\left(\frac{y-x}{\varepsilon}\right) f(y) d A(y)
$$

Show that f_{ε} is $C^{\infty}(\bar{G})$ and tends to f uniformly as $\varepsilon \rightarrow 0$.

Note. This property has been used in the proof of Cauchy-Peano theorem.
7. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in \mathbb{R} (you may draw a table):
(a) $A=\left\{n / 2^{m}: n, m \in \mathbb{Z}\right\}$,
(b) B, all irrational numbers,
(c) $C=\{0,1,1 / 2,1 / 3, \cdots\}$,
(d) $D=\{1,1 / 2,1 / 3, \cdots\}$,
(e) $E=\left\{x: x^{2}+3 x-6=0\right\}$,
(f) $F=\cup_{k}(k, k+1), k \in \mathbb{N}$,
8. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in $C[0,1]$ (you may draw a table):
(a) \mathcal{A}, all polynomials whose coefficients are rational numbers,
(b) \mathcal{B}, all polynomials,
(c) $\mathcal{C}=\left\{f: \int_{0}^{1} f(x) d x \neq 0\right\}$,
(d) $\mathcal{D}=\{f: f(1 / 2)=1\}$.

